46 research outputs found

    From variable density sampling to continuous sampling using Markov chains

    Get PDF
    International audienceSince its discovery over the last decade, Compressed Sensing (CS) has been successfully applied to Magnetic Resonance Imaging (MRI). It has been shown to be a powerful way to reduce scanning time without sacrificing image quality. MR images are actually strongly compressible in a wavelet basis, the latter being largely incoherent with the k-space or spatial Fourier domain where acquisition is performed. Nevertheless, since its first application to MRI [1], the theoretical justification of actual k-space sampling strategies is questionable. Indeed, the vast majority of k-space sampling distributions have been heuris- tically designed (e.g., variable density) or driven by experimental feasibility considerations (e.g., random radial or spiral sampling to achieve smoothness k-space trajectory). In this paper, we try to reconcile very recent CS results with the MRI specificities (magnetic field gradients) by enforcing the measurements, i.e. samples of k-space, to fit continuous trajectories. To this end, we propose random walk continuous sampling based on Markov chains and we compare the reconstruction quality of this scheme to the state-of-the art

    Variable density sampling based on physically plausible gradient waveform. Application to 3D MRI angiography

    Get PDF
    Performing k-space variable density sampling is a popular way of reducing scanning time in Magnetic Resonance Imaging (MRI). Unfortunately, given a sampling trajectory, it is not clear how to traverse it using gradient waveforms. In this paper, we actually show that existing methods [1, 2] can yield large traversal time if the trajectory contains high curvature areas. Therefore, we consider here a new method for gradient waveform design which is based on the projection of unrealistic initial trajectory onto the set of hardware constraints. Next, we show on realistic simulations that this algorithm allows implementing variable density trajectories resulting from the piecewise linear solution of the Travelling Salesman Problem in a reasonable time. Finally, we demonstrate the application of this approach to 2D MRI reconstruction and 3D angiography in the mouse brain.Comment: IEEE International Symposium on Biomedical Imaging (ISBI), Apr 2015, New-York, United State

    Echantillonnage compressé le long de trajectoires physiquement plausibles en IRM

    Get PDF
    Magnetic Resonance Imaging~(MRI) is a non-invasive and non-ionizing imaging technique that provides images of body tissues, using the contrast sensitivity coming from the magnetic parameters (T1_1, T2_2 and proton density). Data are acquired in the kk-space, corresponding to spatial Fourier frequencies. Because of physical constraints, the displacement in the kk-space is subject to kinematic constraints. Indeed, magnetic field gradients and their temporal derivative are upper bounded. Hence, the scanning time increases with the image resolution. Decreasing scanning time is crucial to improve patient comfort, decrease exam costs, limit the image distortions~(eg, created by the patient movement), or decrease temporal resolution in functionnal MRI. Reducing scanning time can be addressed by Compressed Sensing~(CS) theory. The latter is a technique that guarantees the perfect recovery of an image from undersampled data in kk-space, by assuming that the image is sparse in a wavelet basis. Unfortunately, CS theory cannot be directly cast to the MRI setting. The reasons are: i) acquisition~(Fourier) and representation~(wavelets) bases are coherent and ii) sampling schemes obtained using CS theorems are composed of isolated measurements and cannot be realistically implemented by magnetic field gradients: the sampling is usually performed along continuous or more regular curves. However, heuristic application of CS in MRI has provided promising results. In this thesis, we aim to develop theoretical tools to apply CS to MRI and other modalities. On the one hand, we propose a variable density sampling theory to answer the first inpediment. The more the sample contains information, the more it is likely to be drawn. On the other hand, we propose sampling schemes and design sampling trajectories that fulfill acquisition constraints, while traversing the kk-space with the sampling density advocated by the theory. The second point is complex and is thus addressed step by step. First, we propose continuous sampling schemes based on random walks and on travelling salesman~(TSP) problem. Then, we propose a projection algorithm onto the space of constraints that returns the closest feasible curve of an input curve~(eg, a TSP solution). Finally, we provide an algorithm to project a measure onto a set of measures carried by parameterizations. In particular, if this set is the one carried by admissible curves, the algorithm returns a curve which sampling density is close to the measure to project. This designs an admissible variable density sampler. The reconstruction results obtained in simulations using this strategy outperform existing acquisition trajectories~(spiral, radial) by about 3~dB. They permit to envision a future implementation on a real 7~T scanner soon, notably in the context of high resolution anatomical imaging.L'imagerie par résonance magnétique (IRM) est une technique d'imagerie non invasive et non ionisante qui permet d'imager et de discriminer les tissus mous grâce à une bonne sensibilité de contraste issue de la variation de paramètres physiques (T1_1, T2_2, densité de protons) spécifique à chaque tissu. Les données sont acquises dans l'espace-kk, correspondant aux fréquences spatiales de l'image. Des contraintes physiques et matérielles contraignent le mode de fonctionnement des gradients de champ magnétique utilisés pour acquérir les données. Ainsi, ces dernières sont obtenues séquentiellement le long de trajectoires assez régulières (dérivée et dérivée seconde bornées). En conséquence, la durée d'acquisition augmente avec la résolution recherchée de l'image. Accélérer l'acquisition des données est crucial pour réduire la durée d'examen et ainsi améliorer le confort du sujet, diminuer les coûts, limiter les distorsions dans l'image~(e.g., dues au mouvement), ou encore augmenter la résolution temporelle en IRM fonctionnelle. L'échantillonnage compressif permet de sous-échantillonner l'espace-kk, et de reconstruire une image de bonne qualité en utilisant une hypothèse de parcimonie de l'image dans une base d'ondelettes. Les théories d'échantillonnage compressif s'adaptent mal à l'IRM, même si certaines heuristiques ont permis d'obtenir des résultats prometteurs. Les problèmes rencontrés en IRM pour l'application de cette théorie sont i) d'une part, les bases d'acquisition~(Fourier) et de représentation~(ondelettes) sont cohérentes ; et ii) les schémas actuellement couverts par la théorie sont composés de mesures isolées, incompatibles avec l'échantillonnage continu le long de segments ou de courbes. Cette thèse vise à développer une théorie de l'échantillonnage compressif applicable à l'IRM et à d'autres modalités. D'une part, nous proposons une théorie d'échantillonnage à densité variable pour répondre au premier point. Les échantillons les plus informatifs ont une probabilité plus élevée d'être mesurés. D'autre part, nous proposons des schémas et concevons des trajectoires qui vérifient les contraintes d'acquisition tout en parcourant l'espace-kk avec la densité prescrite dans la théorie de l'échantillonnage à densité variable. Ce second point étant complexe, il est abordé par une séquence de contributions indépendantes. D'abord, nous proposons des schémas d'échantillonnage à densité variables le long de courbes continues~(marche aléatoire, voyageur de commerce). Ensuite, nous proposons un algorithme de projection sur l'espace des contraintes qui renvoie la courbe physiquement plausible la plus proche d'une courbe donnée~(e.g., une solution du voyageur de commerce). Nous donnons enfin un algorithme de projection sur des espaces de mesures qui permet de trouver la projection d'une distribution quelconque sur l'espace des mesures porté par les courbes admissibles. Ainsi, la courbe obtenue est physiquement admissible et réalise un échantillonnage à densité variable. Les résultats de reconstruction obtenus en simulation à partir de cette méthode dépassent ceux associées aux trajectoires d'acquisition utilisées classiquement~(spirale, radiale) de plusieurs décibels (de l'ordre de 3~dB) et permettent d'envisager une implémentation prochaine à 7~Tesla notamment dans le contexte de l'imagerie anatomique haute résolution

    A projection method on measures sets

    Get PDF
    We consider the problem of projecting a probability measure π on a set MN of Radon measures. The projection is defined as a solution of the following variational problem: inf µ∈M N h (µ − π) 2 2 , where h ∈ L 2 (Ω) is a kernel, Ω ⊂ R d and denotes the convolution operator. To motivate and illustrate our study, we show that this problem arises naturally in various practical image rendering problems such as stippling (representing an image with N dots) or continuous line drawing (representing an image with a continuous line). We provide a necessary and sufficient condition on the sequence (MN) N ∈N that ensures weak convergence of the projections (µ * N) N ∈N to π. We then provide a numerical algorithm to solve a discretized version of the problem and show several illustrations related to computer-assisted synthesis of artistic paintings/drawings

    Gradient waveform design for variable density sampling in Magnetic Resonance Imaging

    Get PDF
    Fast coverage of k-space is a major concern to speed up data acquisition in Magnetic Resonance Imaging (MRI) and limit image distortions due to long echo train durations. The hardware gradient constraints (magnitude, slew rate) must be taken into account to collect a sufficient amount of samples in a minimal amount of time. However, sampling strategies (e.g., Compressed Sensing) and optimal gradient waveform design have been developed separately so far. The major flaw of existing methods is that they do not take the sampling density into account, the latter being central in sampling theory. In particular, methods using optimal control tend to agglutinate samples in high curvature areas. In this paper, we develop an iterative algorithm to project any parameterization of k-space trajectories onto the set of feasible curves that fulfills the gradient constraints. We show that our projection algorithm provides a more efficient alternative than existinf approaches and that it can be a way of reducing acquisition time while maintaining sampling density for piece-wise linear trajectories

    A projection algorithm for gradient waveforms design in Magnetic Resonance Imaging

    Get PDF
    International audienceCollecting the maximal amount of information in a given scanning time is a major concern in Magnetic Resonance Imaging (MRI) to speed up image acquisition. The hardware constraints (gradient magnitude, slew rate, ...), physical distortions (e.g., off-resonance effects) and sampling theorems (Shannon, compressed sensing) must be taken into account simultaneously, which makes this problem extremely challenging. To date, the main approach to design gradient waveform has consisted of selecting an initial shape (e.g. spiral, radial lines, ...) and then traversing it as fast as possible using optimal control. In this paper, we propose an alternative solution which first consists of defining a desired parameterization of the trajectory and then of optimizing for minimal deviation of the sampling points within gradient constraints. This method has various advantages. First, it better preserves the density of the input curve which is critical in sampling theory. Second, it allows to smooth high curvature areas making the acquisition time shorter in some cases. Third, it can be used both in the Shannon and CS sampling theories. Last, the optimized trajectory is computed as the solution of an efficient iterative algorithm based on convex programming. For piecewise linear trajectories, as compared to optimal control reparameterization, our approach generates a gain in scanning time of 10% in echo planar imaging while improving image quality in terms of signal-to-noise ratio (SNR) by more than 6 dB. We also investigate original trajectories relying on traveling salesman problem solutions. In this context, the sampling patterns obtained using the proposed projection algorithm are shown to provide significantly better reconstructions (more than 6 dB) while lasting the same scanning time

    Comment représenter une image avec un spaghetti ?

    Get PDF
    International audienceWe study the problem of projecting a given measure on a set of pushforward measures associated with some classes of parameterizedfunctions. We propose an original numerical algorithm to solve the problem based on an analogy with an attraction-repulsion problem. Thiswork is an extension of some recent stippling results that enables us to represent images with continuous curves.Nous étudions ici le problème de projection d'une mesure sur un ensemble de mesures discrètes (une somme de Diracs). Des contraintes cinématiques sur la position des points nous permettent d'étendre ce problème de projection à des courbes discrètes. Nous proposons une analogie physique de ce problème avec la répartition de charges ponctuelles dans un potentiel. Ceci nous permet de proposer un algorithme pour déterminer une configuration de Diracs visuellement satisfaisante. Notre problème de projection généralise les résultats de stippling existants qui permettent la représentation d'images à partir de points isolés. Abstract – We study the problem of projecting a given measure on a set of pushforward measures associated with some classes of parameterized functions. We propose an original numerical algorithm to solve the problem based on an analogy with an attraction-repulsion problem. This work is an extension of some recent stippling results that enables us to represent images with continuous curves

    A projection algorithm on measures sets

    Get PDF
    We consider the problem of projecting a probability measure π\pi on a set MN\mathcal{M}_N of Radon measures. The projection is defined as a solution of the following variational problem:\begin{equation*}\inf_{\mu\in \mathcal{M}_N} \|h\star (\mu - \pi)\|_2^2,\end{equation*}where hL2(Ω)h\in L^2(\Omega) is a kernel, ΩRd\Omega\subset \R^d and \star denotes the convolution operator.To motivate and illustrate our study, we show that this problem arises naturally in various practical image rendering problems such as stippling (representing an image with NN dots) or continuous line drawing (representing an image with a continuous line).We provide a necessary and sufficient condition on the sequence (MN)NN(\mathcal{M}_N)_{N\in \N} that ensures weak convergence of the projections (μN)NN(\mu^*_N)_{N\in \N} to π\pi.We then provide a numerical algorithm to solve a discretized version of the problem and show several illustrations related to computer-assisted synthesis of artistic paintings/drawings

    Sur la génération de schémas d'échantillonnage compressé en IRM

    Get PDF
    International audienceThis article contains two contributions. First, we describe the state-of-the-art theories in compressed sensing for Magnetic ResonanceImaging (MRI). This allows us to bring out important principles that should guide the generation of sampling patterns. Second, wedescribe an original methodology to design efficient sampling schemes. It consists of projecting a sampling density on the space of feasiblemeasures for MRI. We end up by proposing comparisons to current sampling strategies on simulated data. This illustrates the well-foundednessof our approach.Cet article a deux finalités. Premièrement, nous proposons un état de l'art des théories d'échantillonnage compressé pour l'Imagerie par résonance magnétique (IRM). Ceci nous permet de dégager quelques grands principes à suivre pour générer des schémas performants en termes de temps d'acquisition et de qualité de reconstruction. Dans une deuxième partie, nous proposons une méthodologie originale de conception de schémas qui repose sur des algorithmes de projection de densités sur des espaces de mesures. Nous proposons finalement des comparaisons avec des stratégies actuelles d'échantillonnage sur des simulations et montrons ainsi le bien-fondé de notre approche. Abstract – This article contains two contributions. First, we describe the state-of-the-art theories in compressed sensing for Magnetic Resonance Imaging (MRI). This allows us to bring out important principles that should guide the generation of sampling patterns. Second, we describe an original methodology to design efficient sampling schemes. It consists of projecting a sampling density on the space of feasible measures for MRI. We end up by proposing comparisons to current sampling strategies on simulated data. This illustrates the well-foundedness of our approach
    corecore